Internal Function for Multinomial Regression in Mplus
Usage
.mplusMultinomial(
dv,
iv,
data,
idvar = "",
integration = 1000,
processors = 2,
OR = TRUE,
pairwise = TRUE,
...
)
Arguments
- dv
A character string with the variable name for the dependent (outcome) variable.
- iv
A character vector with the variable name(s) for the independent (predictor/explanatory) variable(s).
- data
A dataset.
- idvar
Optional. A character string indicating the name of the ID variable. Not currently used but may be used in future.
- integration
An integer indicating the number of Monte Carlo integration points to use. Defaults to 1000.
- processors
An integer indicating the number of processors to use. Passed to Mplus. Defaults to 2.
- OR
A logical value whether odds ratios should be returned. Defaults to
TRUE
.- pairwise
A logical value indicating whether all pairwise tests should be computed. Defaults to
TRUE
.- ...
Additional arguments passed to
mplusModeler()
.
Author
Joshua F. Wiley jwiley.psych@gmail.com
Examples
if (FALSE) { # \dontrun{
set.seed(1234)
tmpd <- data.frame(
x1 = rnorm(200),
x2 = rnorm(200),
x3 = cut(rnorm(200),
breaks = c(-Inf, -.7, .7, Inf),
labels = c("a", "b", "c")))
tmpd$y <- cut(rnorm(200, sd = 2) + tmpd$x1 + tmpd$x2 + I(tmpd$x3 == "b"),
breaks = c(-Inf, -.5, 1, Inf),
labels = c("L", "M", "H"))
tmpres <- MplusAutomation:::.mplusMultinomial(
dv = "y",
iv = c("x1", "x2"),
data = tmpd,
pairwise = TRUE)
tmpres2 <- MplusAutomation:::.mplusMultinomial(
dv = "y",
iv = c("x1", "x2"),
data = tmpd,
pairwise = FALSE)
tmpres3 <- MplusAutomation:::.mplusMultinomial(
dv = "y",
iv = c("x1@0", "x2@0"),
data = tmpd,
pairwise = FALSE)
} # }