(DEPRECATED) Extract summary statistics from a single output file or from a group of Mplus models within a directory
Source:R/parseOutput.R
extractModelSummaries.Rd
Parses a group of Mplus model output files (.out extension) for model fit statistics.
At this time, the details extracted are fixed and include: Filename, InputInstructions, Title, Estimator,
LL, BIC, aBIC, AIC, AICC, Parameters, Observations, CFI, TLI, RMSEA_Estimate, RMSEA_90CI_LB, RMSEA_90CI_UB,
RMSEA_pLT05, ChiSqM_Value, ChiSqM_DF, ChiSq_PValue, BLRT_KM1LL, BLRT_PValue, BLRT_Numdraws)
. The
infrastructure is in place to allow for user-specified selection of summary statistics in future versions.
Usage
extractModelSummaries(target = getwd(), recursive = FALSE, filefilter)
Arguments
- target
the directory containing Mplus output files (.out) to parse OR the single output file to be parsed. Defaults to the current working directory. Example: "C:/Users/Michael/Mplus Runs"
- recursive
optional. If
TRUE
, parse all models nested in subdirectories withindirectory
. Defaults toFALSE
.- filefilter
a Perl regular expression (PCRE-compatible) specifying particular output files to be parsed within
directory
. Seeregex
or https://www.pcre.org/pcre.txt for details about regular expression syntax.
Value
Returns a data.frame
containing model fit statistics for all output files within directory
.
The data.frame
contains some of the following variables (depends on model type):
Title
: Title for the model, specified by the TITLE: commandFilename
: Filename of the output fileEstimator
: Estimator used for the model (e.g., ML, MLR, WLSMV, etc.)LL
: Log-likelihood of the modelBIC
: Bayesian Information CriterionaBIC
: Sample-Size-Adjusted BIC (Sclove, 1987)AIC
: Akaike's Information CriterionAICC
: Corrected AIC, based on Sugiura (1978) and recommended by Burnham & Anderson (2002)DIC
: Deviance Information Criterion. Available in ESTIMATOR=BAYES output.Parameters
: Number of parameters estimated by the modelpD
: Estimated number of parameters in Bayesian outputObservations
: The number of observations for the model (does not suppport multiple-groups analysis at this time)CFI
: Confirmatory Fit IndexTLI
: Tucker-Lewis IndexRMSEA_Estimate
: Point estimate of root mean squared error of approximationRMSEA_90CI_LB
: Lower bound of the 90\RMSEA_90CI_UB
: Upper bound of the 90\RMSEA_pLT05
: Probability that the RMSEA estimate falls below .05, indicating good fit.ChiSqM_Value
: Model chi-squared valueChiSqM_DF
: Model chi-squared degrees of freedomChiSqM_PValue
: Model chi-squared p valueChiSqM_ScalingCorrection
: H0 Scaling Correction FactorObsRepChiSqDiff_95CI_LB
: Lower bound of 95\ObsRepChiSqDiff_95CI_UB
: Upper bound of 95\PostPred_PValue
: Posterior predictive p-valuePriorPostPred_PValue
: Prior Posterior Predictive P-ValueBLRT_RequestedDraws
: Number of requested bootstrap draws for TECH14.BLRT_KM1LL
: Log-likelihood of the K-1 model (one less class) for the Bootstrapped Likelihood Ratio Test (TECH14).BLRT_2xLLDiff
: Two times the log-likelihood difference of the models with K and K-1 classes (TECH14).BLRT_ParamDiff
: Difference in the number of parameters for models with K and K-1 classes (TECH14).BLRT_PValue
: P-value of the Bootstrapped Likelihood Ratio Test (TECH14) testing whether the K class model is significantly better than K-1BLRT_SuccessfulDraws
: The number of successful bootstrapped samples used in the Bootstrapped Likelihood Ratio TestSRMR
: Standardized root mean square residualSRMR.Between
: For TYPE=TWOLEVEL output, standardized root mean square residual for between levelSRMR.Within
: For TYPE=TWOLEVEL output, standardized root mean square residual for within levelWRMR
: Weighted root mean square residualChiSqBaseline_Value
: Baseline (unstructured) chi-squared valueChiSqBaseline_DF
: Baseline (unstructured) chi-squared degrees of freedomChiSqBaseline_PValue
: Baseline (unstructured) chi-squared p valueNumFactors
: For TYPE=EFA output, the number of factorsT11_KM1Starts
: TECH11: Number of initial stage random starts for k-1 modelT11_KM1Final
: TECH11: Number of final stage optimizations for k-1 modelT11_KM1LL
: TECH11: Log-likelihood of the K-1 model used for the Vuong-Lo-Mendell-Rubin LRTT11_VLMR_2xLLDiff
: TECH11: 2 * Log-likelihood Difference of K-class vs. K-1-class model for the Vuong-Lo-Mendell-Rubin LRTT11_VLMR_ParamDiff
: TECH11: Difference in number of parameters between K-class and K-1-class model for the Vuong-Lo-Mendell-Rubin LRTT11_VLMR_Mean
: TECH11: Vuong-Lo-Mendell-Rubin LRT meanT11_VLMR_SD
: TECH11: Vuong-Lo-Mendell-Rubin LRT standard deviationT11_VLMR_PValue
: TECH11: Vuong-Lo-Mendell-Rubin LRT p-valueT11_LMR_Value
: TECH11: Lo-Mendell-Rubin Adjusted LRT valueT11_LMR_PValue
: TECH11: Lo-Mendell-Rubin Adjusted LRT p-value